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To maintain the output until both inputs drop, use a JOIN. It can
be 2® or 4® with a MERGE instead of an OR.

isochronic forks to the rescue?



General observations

- There is no way to fix these circuits without cheating.
- “QDI" designers insist on isochronic forks as a workaround.
- Logic gates might not be the best choice of primitives.

- Isochronic forks can be avoided with different primitives.
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The gateless gate
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Petri nets
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Local optimizations preserving observable behavior are a bonus.
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Petri net models of DI primitives

MERGE

- an open input transition for each input terminal
- an open output transition for each output terminal

- Internal places and transitions to constrain firing sequences
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Benefits

- Petri Net models combine just like components in a circuit.
- The Petri net model is proportional in size to the circuit.
- Things that look like they should be true are true'!

- and more ...



Analysis
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Transducers

R1,Ry/Gy R1,Ry/G,

Ack,R; /G, Ack,Ry/Gy

Ack,R;,R, /G, Ack,R1,R,/G,

Ack/G, Ack/G,

Ack,R,/G,

Ack,R, /G, Ack,R,/G,

Ack,R, /Gy



({a, b}, {c})







Relational trace set recognizer

accepts quiescent and divergent traces only



Equivalence and refinement

For processes X and Y with identical alphabets and relational
trace sets [X] and [Y]

behavioral equivalence (processes are indistinguishable)

X=Y o [X] =[]

refinement (Y is as good as X or better)

XcY e [X]2]Y]

A correct implementation refines its specification.



Specifications




Process combinators

for terminals T and Petri-net-modeled DI processes D

Type Mnemonic Description
T—-D get receive a signal
put send a signal
(DxD)—->D seq do one after the other
par do both concurrently
alt do either but not both
env do only what's needed to interact

(D—->D)—->D fix act as the solution to a recurrence
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Process examples
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h(a,b) = seq (seq (get a, put b),seq (get a, put b))

arbitration

m = loop alt (h(ro, g0), (71, 91))
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Process examples

repetition

loop = Ap. fix Af. seq (p, f)

synchronization

j = loop seq (par (get a, get b), put ¢)

4d handshake

h(a,b) = seq (seq (get a, put b),seq (get a, put b))
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nacking arbiter

n = loop (F alt) (F seq)*(
(get 7o, put go, get 7o, put go),
{get 1o, put dy),
(get r1, put g1, get r1, put g1,
(get r1,put di))

- 4® grant cycles
- 20 deny cycles

- functional programming operators (fold, map, lists)
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Shunt primitive

The SHUNT primitive has two modes of operation.

- normal mode - can either
- relay left to right and stay normal
- relay top to bottom and change modes
- shunting mode — must always i

- relay left to bottom exactly once
- change back to normal mode
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hierarchical decomposition
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Arbiters
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Arbiters

token ring }

grant in

grant out
request in

request out

request/release grant /acknowledge

linear space, linear time (sort of)



Sequencers

an arbiter with 2® ports and a shared acknowledgment terminal



State Based Synthesis
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Further provisions

L. sparse |~

decision encoder
wait

R

- concurrent inputs require at least one sequencer

- initial non-quiescence requires a PUSH in a different place
- non-deterministically concurrent inputs require feedback
- tons of optimizations possible

M
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({a}, {x}) 1 (b))

({a, b}, 42})

{ah, @)  ({b?},2)

{62}, {y})

(b}, o) ({a},2)

({a}{=}) ({b}{2})

({b?},2) ({a?},2)






Limitations of state based synthesis

- exponential time and space to compute transducers
- feasibility only for small specifications
- results not always as good as manual

However, state based synthesis can serve as
the base case of a recursive algorithm for
direct mapping synthesis.



Direct Mapping Synthesis




Bypassing state enumeration

Simulate token flow through a Petri net by signals in a circuit.
Use buffers for nodes, wires for arcs, and 4 kinds of interfaces.

- one transition to many places
- many transitions to one place
- many places to one transition

- one place to many transitions
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Four kinds of interfaces

one place to many transitions

e —

Use an angelic router !



Routing for real
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probability of a successfully negotiated token transfer:



A feasible protocol

forget angelic routers
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A feasible protocol

forget angelic routers
use a FORK but ...
arbitrate among transitions !

E’i




To-do list

- Precisely describe the transition < monitor protcol.
- Design the transition circuit.

- Design the monitor circuit.
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A Y
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Recurrences

Let m € {0...|G| — 1} denote the lexicographic ordinal of a
vertex m with respect to @(G). Then each vertex determines

Hu = AP.(Fat) (| {(Fsea) o1 (Pay))) ™

(pyn)ee

in a system H e (DI¢l - D)IGl of recurrences solvable for a
fixed point X e DIG! such that for all i < |H|

The monitor process (to be synthesized) is the initial term Xj.



Solving for a fixed point

For a list of recurrences H = (Hy ... Hg|—1) € (D* — D)* derive
HOi=(H;...Hy_1yn{H...H_1)

from H by deleting Hy and rolling H; to the head. Let
H=HD1,HS?2,...,HO|H|-1)

denote the list of values of H © i for 0 < i < |H|. Then

T(H) = fix Ap. Ho(p) if|Hl =1
| fixAp. Ho(p: T (Ah. hoAg. p: ¢)* H') otherwise

yields the first process in the fixed point of H. The recursion
terminates because |H'| = |H ©i| = |H| — 1 holds.



The end game

DMS () = SBS x if |z < Ks
~ | (QDms) Tz otherwise

- DMms recursively synthesizes a circuit by direct mapping.
- SBS z Is the state based synthetic form of a process z.

- ||z| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .
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~ | (QDms) Tz otherwise

- DMms recursively synthesizes a circuit by direct mapping.
- SBS z Is the state based synthetic form of a process z.

- ||z| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .



The end game

ows(a) | 5557 if |z] < K
~ | (QDms) Tz otherwise

- DMms recursively synthesizes a circuit by direct mapping.
- SBS z Is the state based synthetic form of a process z.

- ||z| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .

For example, let |z| equal the number of places in the Petri
net model of z with K, = 20 for a cutoff under 22° markings.
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Network combining forms

Z%((Z%R(F,(TOGGLE? | 1,MERGE?), R(SHUNT,FORK) | 1)) | 1 | 2)
(Z2R(F»{TOGGLE? | 1,MERGE?), R(SHUNT, FORK) | 1)) | 1} 2
F,(TOGGLE? | 1, MERGE?)

TOGGLE? | 1

MERGE?

R(SHUNT, FORK) |
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