Synthesis Without State Explosion

from concurrent processes to netlists

Dennis Furey
18 November 2019

Plumstead Publishing

A logic puzzle

Build a three-way voting machine.

x=(anb)v(anc)v(bnac)

A logic puzzle

Build a three-way voting machine.

x=(anb)v(anc)v(bnac)

- presupposes a 4® (return to zero) protocol

- but 2 could drop prematurely

A logic puzzle

Build a three-way voting machine.

x=(anb)v(anc)v(bnac)

- presupposes a 4® (return to zero) protocol

- but 2 could drop prematurely

A logic puzzle

Build a three-way voting machine.

x=(anb)v(anc)v(bnac)

- presupposes a 4® (return to zero) protocol

- but 2 could drop prematurely

A logic puzzle

Build a three-way voting machine.

x=(anb)v(anc)v(bnac)

- presupposes a 4® (return to zero) protocol

- but 2 could drop prematurely

A logic puzzle

Build a three-way voting machine.

x=(anb)v(anc)v(bnac)

- presupposes a 4® (return to zero) protocol

- but 2 could drop prematurely

To maintain the output until both inputs drop, use a JOIN.

—1 -
O

To maintain the output until both inputs drop, use a JOIN.

= -
O

To maintain the output until both inputs drop, use a JOIN.

=
=

To maintain the output until both inputs drop, use a JOIN.

=
=

To maintain the output until both inputs drop, use a JOIN.

—1 -
O

To maintain the output until both inputs drop, use a JOIN. It can
be 2® or 4® with a MERGE instead of an OR.

To maintain the output until both inputs drop, use a JOIN. It can
be 2® or 4® with a MERGE instead of an OR.

To maintain the output until both inputs drop, use a JOIN. It can
be 2® or 4® with a MERGE instead of an OR.

To maintain the output until both inputs drop, use a JOIN. It can
be 2® or 4® with a MERGE instead of an OR.

To maintain the output until both inputs drop, use a JOIN. It can
be 2® or 4® with a MERGE instead of an OR.

To maintain the output until both inputs drop, use a JOIN. It can
be 2® or 4® with a MERGE instead of an OR.

isochronic forks to the rescue?

General observations

- There is no way to fix these circuits without cheating.
- “QDI" designers insist on isochronic forks as a workaround.
- Logic gates might not be the best choice of primitives.

- Isochronic forks can be avoided with different primitives.

&\
The gateless gate

Delay insensitive primitives

- 4 D —<E=

JOIN FORK MERGE TOGGLE
== l[:j— >
ARB PUSH
SHUNT

- only seven needed for universality

+ no more than four terminals each

Delay insensitive primitives

- 4 D —<E=

JOIN FORK MERGE TOGGLE
== l[:j— >
ARB PUSH
SHUNT

- only seven needed for universality

+ no more than four terminals each

Delay insensitive primitives

- 4 D —<E=

JOIN FORK MERGE TOGGLE
== l[:j— >
ARB PUSH
SHUNT

- only seven needed for universality

+ no more than four terminals each

Delay insensitive primitives

- 4 D —<E=

JOIN FORK MERGE TOGGLE
== l[:j— >
ARB PUSH
SHUNT

- only seven needed for universality

+ no more than four terminals each

Delay insensitive primitives

- 4 D —<E=

JOIN FORK MERGE TOGGLE
== l[:j— >
ARB PUSH
SHUNT

- only seven needed for universality

+ no more than four terminals each

Petri nets

Lo [~O—-1-O—4+O—-4+O—4O—[2]

JeEO+-O—+O4-O~+O-

Petri nets

Lo [~ @O0+ O—4O—[2]

Petri nets

S
E~Q~I~Q~I~O~@

Petri nets

Lo [~O—-1@—4+-O—-1-O—4O—|2]

Petri nets

@%Oﬂ{%@

Petri nets

Lo [~ O~ O—4+@—1-O—-O—{2]

Petri nets

@%%%@k&@

Petri nets

Lo [~ O~ O—4+O—-1+@—4-O—[2]

Petri nets

@%%%

Petri nets

Lo [~O—-1O—4+O—-4+O—@—| 2]

Petri nets

Petri nets

Lo [~O—-1-O—4+O—-4+O—4O—[2]

Petri nets

Lo [~O—-1-O—4+O—-4+O—4O—[2]

Local optimizations preserving observable behavior are a bonus.

O

Petri net models of DI primitives

MERGE

- an open input transition for each input terminal
- an open output transition for each output terminal

- Internal places and transitions to constrain firing sequences

Compositionality

a:l>_' . physical a
b . connection b
:I>—> e e

d d
abstraction abstraction
separately together

I%.m' copnfrt)gsnitGiEm Izl/v
N
P e

Benefits

- Petri Net models combine just like components in a circuit.
- The Petri net model is proportional in size to the circuit.
- Things that look like they should be true are true'!

- and more ...

Analysis

@—’if—
s
O— gzl

G o
om0

Ql'm‘IQ
l&mrr

® TF%FL@

new marking

another new marking

Reachability graphs

Reachability graphs

Transducers

R1,Ry/Gy R1,Ry/G,

Ack,R; /G, Ack,Ry/Gy

Ack,R;,R, /G, Ack,R1,R,/G,

Ack/G, Ack/G,

Ack,R,/G,

Ack,R, /G, Ack,R,/G,

Ack,R, /Gy

({a, b}, {c})

Relational trace set recognizer

accepts quiescent and divergent traces only

Equivalence and refinement

For processes X and Y with identical alphabets and relational
trace sets [X] and [Y]

behavioral equivalence (processes are indistinguishable)

X=Y o [X] =[]

refinement (Y is as good as X or better)

XcY e [X]2]Y]

A correct implementation refines its specification.

Specifications

Process combinators

for terminals T and Petri-net-modeled DI processes D

Type Mnemonic Description
T—-D get receive a signal
put send a signal
(DxD)—->D seq do one after the other
par do both concurrently
alt do either but not both
env do only what's needed to interact

(D—->D)—->D fix act as the solution to a recurrence

=0 O~-O—e

P Q

o]~

Loj—

HK

alt (P, Q)

Process examples

repetition

loop = Ap. fix Af. seq (p, f)

synchronization

j = loop seq (par (get a, get b), put ¢)

4d handshake

h(a,b) = seq (seq (get a, put b),seq (get a, put b))

arbitration

m = loop alt (h(ro, g0), (71, 91))

Process examples

repetition
loop = Ap. fix Af. seq (p, f)

synchronization

j = loop seq (par (get a, get b), put ¢)

4d handshake

h(a,b) = seq (seq (get a, put b),seq (get a, put b))

arbitration

m = loop alt (h(ro, g0), (71, 91))

Process examples

repetition

loop = Ap. fix Af. seq (p, f)

synchronization

j = loop seq (par (get a, get b), put ¢)

4d handshake

h(a,b) = seq (seq (get a, put b),seq (get a, put b))

arbitration

m = loop alt (h(ro, g0), (71, 91))

Process examples

repetition

loop = Ap. fix Af. seq (p, f)

synchronization

j = loop seq (par (get a, get b), put ¢)

4® handshake

h(a,b) = seq (seq (get a, put b),seq (get a, put b))

arbitration

m = loop alt (h(ro, g0), (71, 91))

Process examples

repetition

loop = Ap. fix Af. seq (p, f)

synchronization

j = loop seq (par (get a, get b), put ¢)

4d handshake

h(a,b) = seq (seq (get a, put b),seq (get a, put b))

arbitration

m = loop alt (h(ro, g0), (71, 91))

nacking arbiter

n = loop (F alt) (F seq)*(
(get 7o, put go, get 7o, put go),
{get 1o, put dy),
(get r1, put g1, get r1, put g1,
(get r1,put di))

- 4® grant cycles
- 20 deny cycles

- functional programming operators (fold, map, lists)

Building blocks

Shunt primitive

The SHUNT primitive has two modes of operation.

- normal mode

- shunting mode i

Shunt primitive

The SHUNT primitive has two modes of operation.

- normal mode - can either
- relay left to right and stay normal

- shunting mode i

Shunt primitive

The SHUNT primitive has two modes of operation.

- normal mode - can either

- relay left to right and stay normal
- relay top to bottom and change modes

- shunting mode

Shunt primitive

The SHUNT primitive has two modes of operation.

- normal mode - can either
- relay left to right and stay normal
- relay top to bottom and change modes
- shunting mode — must always i

- relay left to bottom exactly once
- change back to normal mode

Decision waits

one row and multiple columns

Decision waits

one row and multiple columns

Decision waits

one row and multiple columns

Decision waits

=1 9901"

one row and multiple columns

Decision waits

=1 9901"

one row and multiple columns

multiple rows and columns

Cop C1 C2 C3

bl

m”-— & & & @
n-— e e e e
nh— © © © e

multiple rows and columns

0 —>
1T —>

T2

co c1 c2 c3
pi ci pi ci pi ci
{7 ro T4 0 T TOT—|
po co d_\doo po co d_\dm po co d_\dog \d02
pi ci pi ci pi ci
® i ro i r0 i A
pi 1:0 d—\dlo pi io d—\dll pI io d—\d12 \d12
pt ci pi ci pi ci
{73 ro i ro 7 TOT|
po co d_\dgo po co d‘\dm po co d‘\dn \d22

_

multiple rows and columns

o —>
T1

T2

co c1 c2 c3
pi ci pi ci pi ci
{7 ro 0 ro T TOT—|
po co d_\doo po co d_\dm po co d_\dog \d02
Pl ci P oci ptoci
i ro i ro i To— |
pi 1:0 d—\dlo pi io d—\dll pI io d—\d12 \d12
pt ci pi ci pi ci
{73 ro i ro 7 TOT|
d d d
o _\‘dzo Pe Jco _\d21 L JCO _\d22 \d22

multiple rows and columns

o —>
T1

T2

‘JJ

co c1 c2 c3
pi ci pi ci pi ci
{7 ro T4 0 T TOT—|
po co d_\doo po co d_\dm po co d_\dog \d02
pi ci pi ci pi ci
i ro i ro i To— |
pi 1:0 d—\dlo pi io d—\dll pI io d—\d12 \d12
pt ci pi ci pi ci
{73 ro i ro 7 TOT|
po co d_\dgo po co d‘\dm po co d‘\dn \d22

multiple rows and columns

o —>
T1

T2

—d

co c1 c2 c3
pi ci pi ci pi ci
{7 ro T4 0 T TOT—|
po co d_\doo po co d_\dm po co d_\dog \d02
pi ci pi ci pi ci
i ro i ro i To— |
pi 1:0 d—\dlo pl) io d—\dll pi io d—\d12 \d12
pt ci pi ci pi ci
{73 ro i ro 7 TOT|
po co d_\dgo po co d‘\dm po co d‘\dn \dgg

multiple rows and columns

o —>
T1

T2

d

co c1 c2 c3
pi ci pi ci pi ci
{7 ro T4 0 T TOT—|
po co d_\doo po co d_\dm po co d_\dog \d02
pi ci pi ci pi ci
i ro i ro i To— |
pi 1:0 d—\dlo pi io d_\dll pI io d—\d12 \d12
pt ci pi ci pi ci
{73 ro i ro 7 TOT|
po co d_\dgo po co d‘\dm po co d‘\dn \d22

one cell, three possible handshakes

* T — 10
* ¢t — co — Pi — Po

cci—co—ri— po—pi—d
ci pr

T ro

co po

one cell, three possible handshakes

* T — 10
* ¢t — co — Pi — Po

cci—co—ri— po—pi—d
ci pr

T ro

co po

one cell, three possible handshakes

* T — 10
* ¢t — co — Pi — Po

cci—co—ri— po—pi—d
ci pr

T ro

co po

one cell, three possible handshakes

* T — 10
* ¢t — co — Pi — Po

cci—co—ri— po—pi—d
ci pr

T ro

co po

one cell, three possible handshakes

* T — 10
* ¢t — co — Pi — Po

cci—co—ri— po—pi—d
ci pr

T ro

co po

one cell, three possible handshakes

* T — 10
* ¢t — co — Pi — Po

s ci—co—ori— po—pi—d
ci pr

T ro

co po

one cell, three possible handshakes

* T — 10
* ¢t — co — Pi — Po

s ci—co—ori— po—pi—d
ci pr

T ro

co po

one cell, three possible handshakes

* T — 10
* ¢t — co — Pi — Po

s ci—co—ori— po—pi—d
ci pr

T ro

co po

hierarchical decomposition

— ;é:;

Sparse decision waits

Sparse decision waits

Sparse

Sparse decision waits

Sparse decision waits

|

Arbiters

mesh

S 0o A 0 o QA

quadratic space, linear time

e T < T S S =

Arbiters

crossbhar QCF
1

j
j!r
/

.y

|

I |
MEINENE;
MEREN

W

quadratic space, log? time

Arbiters

tree

W

|
1

]

W

W

:

W

linear space, logarithmic time

Arbiters

tree

Req,

Ack,

Req,

Ack,

o Rea

Ack;,

linear space, logarithmic time

Arbiters

token ring /

S

linear space, linear time (sort of)

Arbiters

token ring /

Spegt

linear space, linear time (sort of)

Arbiters

token ring /

Spg A

linear space, linear time (sort of)

Arbiters

token ring /

R

linear space, linear time (sort of)

Arbiters

token ring /

]
. G4

SpegA

linear space, linear time (sort of)

Arbiters

token ring /

#]
. &

SpegA

linear space, linear time (sort of)

Arbiters

token ring /

85 2
7

SpegA

linear space, linear time (sort of)

Arbiters

token ring }

grant in

grant out
request in

request out

request/release grant /acknowledge

linear space, linear time (sort of)

Sequencers

an arbiter with 2® ports and a shared acknowledgment terminal

State Based Synthesis

A two-state solution

P =

alt ((F seq) {(get a, put ¢, Py), (F seq) (get b, put e, P1>)

Py = alt ((F seq) get b,put f, Py, (I seq) (get a, put d, Fy))

({0}, {e})

!
({a}. {})

({a}, {d})

({0}, {F})

o—

~ 0O a0

A two-state solution

P =

alt ((F seq) {(get a, put ¢, Py), (F seq) (get b, put e, P1>)

Py = alt ((F seq) get b,put f, Py, (I seq) (get a, put d, Fy))

({0}, {e})

!
({a}. {e})

({a}, {d})

({0}, {F})

o—

~ 0O a0

A two-state solution

P =

alt ((F seq) {(get a, put ¢, Py), (F seq) (get b, put e, P1>)

Py = alt ((F seq) get b,put f, Py, (I seq) (get a, put d, Fy))

({0}, {e})

!
({a}. {})

({a}, {d})

({0}, {F})

*—>

~ 0O a0

A two-state solution

P =

alt ((F seq) {(get a, put ¢, Py), (F seq) (get b, put e, P1>)

Py = alt ((F seq) get b,put f, Py, (I seq) (get a, put d, Fy))

({0}, {e})

!
({a}. {})

({a}, {d})

({0}, {F})

o—

L 4

~ 0O a0

A two-state solution

P =

alt ((F seq) {(get a, put ¢, Py), (F seq) (get b, put e, P1>)

Py = alt ((F seq) get b,put f, Py, (I seq) (get a, put d, Fy))

({0}, {e})

!
({a}. {})

({a}, {d})

({0}, {F})

o—

o— o

A
O QU O

A two-state solution

P =

alt ((F seq) {(get a, put ¢, Py), (F seq) (get b, put e, P1>)

Py = alt ((F seq) get b,put f, Py, (I seq) (get a, put d, Fy))

({0}, {e})

!
({a}. {})

({a}, {d})

({0}, {F})

o—

L4

~ 0O a0

Further provisions

—L

sparse
decision
wait

B

encoder

Further provisions

sparse
decision encoder 4+

wait

- concurrent inputs require at least one sequencer

Further provisions

sparse | ——~
decision encoder 4+

wait

- concurrent inputs require at least one sequencer

- initial non-quiescence requires a PUSH in a different place

Further provisions

L. sparse |~

decision encoder
wait

Lt]

- concurrent inputs require at least one sequencer

M

- initial non-quiescence requires a PUSH in a different place
- non-deterministically concurrent inputs require feedback

Further provisions

L. sparse |~

decision encoder
wait

R

- concurrent inputs require at least one sequencer

- initial non-quiescence requires a PUSH in a different place
- non-deterministically concurrent inputs require feedback
- tons of optimizations possible

M

Non-deterministically concurrent inputs

When an input burst contains another from the same state

({a}, {=}) ({6}, {y})

a‘?
b?

({a, 0}, {z}) b —

al
b!

_»x

_»z

detect concurrency by a deliberate race condition !

Non-deterministically concurrent inputs

When an input burst contains another from the same state

({a}, {=}) ({6}, {y})

a‘?
b?

({a, 0}, {z}) b —

al
b!

_»x

_»z

detect concurrency by a deliberate race condition !

Non-deterministically concurrent inputs

When an input burst contains another from the same state

({a}, {=}) ({6}, {y})

a‘?
b?

({a, 0}, {z}) b —

al
b!

_»x

_»Z

detect concurrency by a deliberate race condition !

Non-deterministically concurrent inputs

When an input burst contains another from the same state

({a}, {=}) ({6}, {y})

a‘?
b?

({a, 0}, {z}) b —

al
b!

_»x

_»Z

detect concurrency by a deliberate race condition !

Non-deterministically concurrent inputs

When an input burst contains another from the same state

({a}, {=}) ({6}, {y})

a‘?
b?

({a, 0}, {z}) b =

al
b!

_»x

_»z

detect concurrency by a deliberate race condition !

Non-deterministically concurrent inputs

When an input burst contains another from the same state

({a}, {=}) ({6}, {y})

a‘?
b?

({a, 0}, {z}) b =

al
b!

_»x

_»Z

detect concurrency by a deliberate race condition !

Non-deterministically concurrent inputs

When an input burst contains another from the same state

({a}, {=}) ({6}, {y})

a‘?
b?

({a, 0}, {z}) b =

al
b!

_»x

_»Z

detect concurrency by a deliberate race condition !

Non-deterministically concurrent inputs

When an input burst contains another from the same state

({a}, {=}) ({6}, {y})

a‘?
b?

({a, 0}, {z}) b =

al
b!

_»x

_»Z

detect concurrency by a deliberate race condition !

({a}, {x}) 1 (b))

({a, b}, 42})

{ah, @) ({b?},2)

{62}, {y})

(b}, o) ({a},2)

({a}{=}) ({b}{2})

({b?},2) ({a?},2)

Limitations of state based synthesis

- exponential time and space to compute transducers
- feasibility only for small specifications
- results not always as good as manual

However, state based synthesis can serve as
the base case of a recursive algorithm for
direct mapping synthesis.

Direct Mapping Synthesis

Bypassing state enumeration

Simulate token flow through a Petri net by signals in a circuit.
Use buffers for nodes, wires for arcs, and 4 kinds of interfaces.

- one transition to many places
- many transitions to one place
- many places to one transition

- one place to many transitions

Four kinds of interfaces

one transition to many places

O
O
O

5B

Four kinds of interfaces

one transition to many places

O
O
O

5B

Four kinds of interfaces

one transition to many places

© © © ®©

5B

Four kinds of interfaces

one transition to many places

© © © ®©
L

Use a FORK'!

Four kinds of interfaces

one transition to many places

© © © ®©

Use a FORK'!

Four kinds of interfaces

many transitions to one place

Y
el

Four kinds of interfaces

many transitions to one place

N4

Four kinds of interfaces

many transitions to one place

J
el

Four kinds of interfaces

many transitions to one place

)

Use a MERGE !

Four kinds of interfaces

many transitions to one place

)

Use a MERGE !

Four kinds of interfaces

many places to one transition

N4

TEEH

Four kinds of interfaces

many places to one transition

W

TEEH

Four kinds of interfaces

many places to one transition

X

©®®®
TEEH

Four kinds of interfaces

many places to one transition

N4

Use a JOIN !

P—

[r}—

El

Four kinds of interfaces

many places to one transition

N4

Use a JOIN !

[P}—

[r}—

El

Four kinds of interfaces

one place to many transitions

alciele

Four kinds of interfaces

one place to many transitions

alciele

Four kinds of interfaces

one place to many transitions

alciele

Four kinds of interfaces

one place to many transitions

| . _
I 4

: [P

I

Use an angelic router !

Four kinds of interfaces

one place to many transitions

| . _
I 4

: [P

I

Use an angelic router !

Four kinds of interfaces

one place to many transitions

e —

Use an angelic router !

Routing for real

"

C//a«@(\

N,
R

9
A
RN
o\i«.@.&ﬁ

BT REL
v.««%% AR5

<
ORI

SIS

A RARS
SRR

/=

1
nn—l

probability of a successfully negotiated token transfer:

A feasible protocol

forget angelic routers
use a FORK but ...

A

A feasible protocol

forget angelic routers
use a FORK but ...

-

T

-

A feasible protocol

forget angelic routers
use a FORK but ...
arbitrate among transitions !

E’i

To-do list

- Precisely describe the transition < monitor protcol.
- Design the transition circuit.

- Design the monitor circuit.

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

monitor interface

Transition-side protocol

from
places

token
notifications

revocation
requests

T

revocation acknowledgment

lock request/release

lock grant/acknowledgment

lock denial

!

to places

@
(@}
€
D <}
+—
[
—
o
=
~ c
o
=
>
— —

! fire |[«—

Lock negotiation channel

request in >

request out

grant out <—<i_ J>—— grantin
=

deny out deny in

fire

Lock negotiation channel

request in —>

request out

grant out <—<i_ J>—— grantin
e

deny out deny in

fire

Lock negotiation channel

request in -

request out

grant out <—<i_ == grant in
=

deny out deny in

fire

Lock negotiation channel

release in —
release out

deny out deny in

grant out <—<i_ >—— grantin
p—

fire

Lock negotiation channel

release in ==

release out

ack out<—<i_ == ackin
=

deny out deny in

fire

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Bte

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Bte

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Bte

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

RNk

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

trty Bpt

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

trty 1ht

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

itty 111

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

fttd ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

fttd ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

fttd ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

R

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

tity ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

tity ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

tity ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

tity ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

tity ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

tity ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

tity ity

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

I

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

Pttty Ite

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

IR

Monitor-side protocol

lock requests can be

- grantable
- deniable
- blockable

tray te

revocation rgd

rgd

revocation

lock

lock

U0I1I0ADI

M

A20]
pbu

20]
p 6.4 UONRIONDI

N

To-do list

v Precisely describe the transition < monitor protcol.
- Design the transition circuit.

- Design the monitor circuit.

To-do list

v Precisely describe the transition < monitor protcol.

- Design the monitor circuit.

Monitor process derivation

Snapshot the monitor's progress in a structure

consisting of sets d, b, w, and g of transitions such that

- lock requests from d are deniable
- lock requests from b are blockable
- revocation acknowledgments are awaited from w

- locks will be granted to g after acknowledgments.

Monitor process derivation

Snapshot the monitor's progress in a structure

consisting of sets d, b, w, and g of transitions such that

- lock requests from d are deniable
- lock requests from b are blockable
- revocation acknowledgments are awaited from w

- locks will be granted to g after acknowledgments.

Monitor process derivation

Snapshot the monitor's progress in a structure

consisting of sets d, b, w, and g of transitions such that

- lock requests from d are deniable
- lock requests from b are blockable
- revocation acknowledgments are awaited from w

- locks will be granted to g after acknowledgments.

Monitor process derivation

Snapshot the monitor's progress in a structure

consisting of sets d, b, w, and g of transitions such that

- lock requests from d are deniable
- lock requests from b are blockable
- revocation acknowledgments are awaited from w

- locks will be granted to g after acknowledgments.

Monitor process derivation

Snapshot the monitor's progress in a structure

consisting of sets d, b, w, and g of transitions such that

- lock requests from d are deniable
- lock requests from b are blockable
- revocation acknowledgments are awaited from w

- locks will be granted to g after acknowledgments.

Monitor process derivation

Build a graph of them starting from all four sets empty

A Y

and edges labeled by process expression snippets.

Monitor process derivation

For each transition i, let

- ¢; = the set of transitions sharing preset places with i
- r; = the set of revocation requests issued on behalf of ¢
- Lo, li1,1i2 = the lock request, grant, and deny signals for i

- h; = the revocation acknowledgment signal from <.

Then each vertex tells us how to find its neighbors !

Monitor process derivation

For each transition i, let

- ¢; = the set of transitions sharing preset places with i
- r; = the set of revocation requests issued on behalf of ¢
- Lo, li1,1i2 = the lock request, grant, and deny signals for i

- h; = the revocation acknowledgment signal from <.

Then each vertex tells us how to find its neighbors !

Monitor process derivation

For each transition i, let

- ¢; = the set of transitions sharing preset places with i
- r; = the set of revocation requests issued on behalf of ¢
- Lo, li1,1i2 = the lock request, grant, and deny signals for i

- h; = the revocation acknowledgment signal from <.

Then each vertex tells us how to find its neighbors !

Monitor process derivation

For each transition i, let

- ¢; = the set of transitions sharing preset places with i
- r; = the set of revocation requests issued on behalf of ¢
- Lo, li1,1i2 = the lock request, grant, and deny signals for i

- h; = the revocation acknowledgment signal from <.

Then each vertex tells us how to find its neighbors !

Monitor process derivation

For each transition i, let

- ¢; = the set of transitions sharing preset places with i
- r; = the set of revocation requests issued on behalf of ¢
- Lo, li1,1i2 = the lock request, grant, and deny signals for i

- h; = the revocation acknowledgment signal from <.

Then each vertex tells us how to find its neighbors !

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy \ Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vie D(r) — U{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

(get Lio, (F par) put*(r;)° ")

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy \ Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> i

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get li07 put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get Lio, put l;1)

b—c;
g —{i}

bu {i}
g

Monitor process derivation

duci
w Y C
A

Vi e D(r) — J{d, b,w, g}

View d

(get hiy Y

d—{i} bu{i}
w — {i} g

Vieg.cinw=g

Y
d—c;
w

b e
gu{i}

{get l;o, (F par) put*(ri)°_1>

b Vied d— {i}

9 <get lio, put li2> X

{put l;1, get lio, put 1;1)

b—c¢;
g —{i}

bu {i}
g

Monitor process derivation

Let G denote the set of all pairs (m, e) in which

- mis avertex {d,b,w, g) € D(G)
- e is the adjacency set of all pairs (p,n) with
- a vertex n adjacent to m
- the list p of processes along the edge from m to n

Monitor process derivation

Let G denote the set of all pairs (m, e) in which

- mis avertex {d,b,w, g) € D(G)
- e is the adjacency set of all pairs (p,n) with
- a vertex n adjacent to m
- the list p of processes along the edge from m to n

Monitor process derivation

Let G denote the set of all pairs (m, e) in which

- mis avertex {d,b,w, g) € D(G)
- e is the adjacency set of all pairs (p,n) with
- a vertex n adjacent to m
- the list p of processes along the edge from m to n

Monitor process derivation

Let G denote the set of all pairs (m, e) in which

- mis avertex {d,b,w, g) € D(G)
- e is the adjacency set of all pairs (p,n) with
- a vertex n adjacent to m
- the list p of processes along the edge from m to n

Monitor process derivation

Let G denote the set of all pairs (m, e) in which

- mis avertex {d,b,w, g) € D(G)
- e is the adjacency set of all pairs (p,n) with
- a vertex n adjacent to m
- the list p of processes along the edge from m to n

Recurrences

Let m € {0...|G| — 1} denote the lexicographic ordinal of a
vertex m with respect to @(G). Then each vertex determines

(m,e)

Recurrences

Let m € {0...|G| — 1} denote the lexicographic ordinal of a
vertex m with respect to @(G). Then each vertex determines

(m, {(p,n) .. (¢;7)})

Recurrences

Let m € {0...|G| — 1} denote the lexicographic ordinal of a
vertex m with respect to @(G). Then each vertex determines

(m, {

(<p0 -p\p|71>7 n)’

({qo- - -1+ 7)})

Recurrences

Let m € {0...|G| — 1} denote the lexicographic ordinal of a
vertex m with respect to @(G). Then each vertex determines

Hy = AP.(Falt){
(Fseq)<p0 ""p\p|717P’fl>7

(F seq){qo- - dig—1, P))

Recurrences

Let m € {0...|G| — 1} denote the lexicographic ordinal of a
vertex m with respect to @(G). Then each vertex determines

Hy = AP (Falt)/
(1 seq) (p 1 (Po)

(Fesa))

Recurrences

Let m € {0...|G| — 1} denote the lexicographic ordinal of a
vertex m with respect to @(G). Then each vertex determines

Hy = AP.(Falt) (|] {(Fseq) (01)

(pyn)ee

Recurrences

Let m € {0...|G| — 1} denote the lexicographic ordinal of a
vertex m with respect to @(G). Then each vertex determines

Hu = AP.(Fat) (| {(Fsea) o1 (Pay))) ™

(pyn)ee

in a system H e (DI¢l - D)IGl of recurrences solvable for a
fixed point X e DIG! such that for all i < |H|

Recurrences

Let m € {0...|G| — 1} denote the lexicographic ordinal of a
vertex m with respect to @(G). Then each vertex determines

Hu = AP.(Fat) (| {(Fsea) o1 (Pay))) ™

(pyn)ee

in a system H e (DI¢l - D)IGl of recurrences solvable for a
fixed point X e DIG! such that for all i < |H|

The monitor process (to be synthesized) is the initial term Xj.

Solving for a fixed point

For a list of recurrences H = (Hy ... Hg|—1) € (D* — D)* derive
HOi=(H;...Hy_1yn{H...H_1)

from H by deleting Hy and rolling H; to the head. Let
H=HD1,HS?2,...,HO|H|-1)

denote the list of values of H © i for 0 < i < |H|. Then

T(H) = fix Ap. Ho(p) if|Hl =1
| fixAp. Ho(p: T (Ah. hoAg. p: ¢)* H') otherwise

yields the first process in the fixed point of H. The recursion
terminates because |H'| = |H ©i| = |H| — 1 holds.

The end game

DMS () = SBS x if |z < Ks
~ | (QDms) Tz otherwise

- DMms recursively synthesizes a circuit by direct mapping.
- SBS z Is the state based synthetic form of a process z.

- ||z| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .

The end game

DMS () = SBS z if |z < Ks
~ | (QDms) Tz otherwise

- DMS recursively synthesizes a circuit by direct mapping.
- SBS z Is the state based synthetic form of a process z.

- ||z| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .

The end game

DMS () = SBS x if |z < Ks
~ | (QDms) Tz otherwise

- DMms recursively synthesizes a circuit by direct mapping.
- SBS z is the state based synthetic form of a process z.

- ||z| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .

The end game

DMS () = SBS x if |z < Ks
~ | (QDms) Tz otherwise

- DMms recursively synthesizes a circuit by direct mapping.
- SBS z Is the state based synthetic form of a process z.

- ||| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .

The end game

DMS () = SBS x if |z < Ks
~ | (QDms) Tz otherwise

- DMms recursively synthesizes a circuit by direct mapping.
- SBS z Is the state based synthetic form of a process z.

- ||z| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .

The end game

DMS () = SBS x if |z < Ks
~ | (QDms) Tz otherwise

- DMms recursively synthesizes a circuit by direct mapping.
- SBS z Is the state based synthetic form of a process z.

- ||z| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .

The end game

DMS () = SBS x if |z < Ks
~ | (QDms) Tz otherwise

- DMms recursively synthesizes a circuit by direct mapping.
- SBS z Is the state based synthetic form of a process z.

- ||z| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .

The end game

ows(a) | 5557 if |z] < K
~ | (QDms) Tz otherwise

- DMms recursively synthesizes a circuit by direct mapping.
- SBS z Is the state based synthetic form of a process z.

- ||z| is a proxy for the cost of computing SBS z.

- K, is the (freely adjustable!) cost budget.

- U x is the process x decomposed into smaller parts.

- (2 f) y is the combined effect of f on each part of .

For example, let |z| equal the number of places in the Petri
net model of z with K, = 20 for a cutoff under 22° markings.

References

https://www.delayinsensitive.com

- full details on everything in this presentation
https://www.cs.upc.edu/~jordicf/gavina/BIB/files/lcpn04_synth.pdf

- on direct mapping synthesis
https://cslyale.edu/~rajit/ps/aer.pdf

- on token rings and trees for neural networks
http://ccrsigcomm.org/archive/1995/jan95/ccr-9501-nagle84.pdf

- on the small packet problem

Thank You

Appendix

Network combining forms

Z%((Z%R(F,(TOGGLE? | 1,MERGE?), R(SHUNT,FORK) | 1)) | 1 | 2)
(Z2R(F»{TOGGLE? | 1,MERGE?), R(SHUNT, FORK) | 1)) | 1} 2
F,(TOGGLE? | 1, MERGE?)

TOGGLE? | 1

MERGE?

R(SHUNT, FORK) |

A delay insensitive three-way voting machine

no
yes
no
no
yes
yes

no
yes _/

A delay insensitive three-way voting machine

no
yes
no
no
yes
yes

no
yes _/

A delay insensitive three-way voting machine

no
yes
no
no
yes
yes
no

yes

A delay insensitive three-way voting machine

no
yes
no
no
yes
yes

no
yes _/

A delay insensitive three-way voting machine

no
yes
no
no
yes
yes
no

yes

A delay insensitive three-way voting machine

no
yes
no
no
yes
yes

no
yes _/

A delay insensitive three-way voting machine

no
yes
no
no
yes
yes
no

yes

A delay insensitive three-way voting machine

no
yes
no
no
yes
yes

no
yes _/

A delay insensitive three-way voting machine

no
yes
no
no
yes
yes
no

yes

	The gateless gate 8ex0pt[height=20mm]yinyang.png
	Analysis 14ex0pt[height=25mm]highlighter.png
	Specifications 9ex0pt[height=25mm]Trekker.png
	Building blocks 9ex0pt[height=30mm]thinker.png
	State Based Synthesis [width=30mm]oslo-negot-hp.png
	Direct Mapping Synthesis [scale=0.125]pangea.png
	Appendix

